Shyam's Slide Share Presentations

VIRTUAL LIBRARY "KNOWLEDGE - KORRIDOR"

This article/post is from a third party website. The views expressed are that of the author. We at Capacity Building & Development may not necessarily subscribe to it completely. The relevance & applicability of the content is limited to certain geographic zones.It is not universal.

TO VIEW MORE CONTENT ON THIS SUBJECT AND OTHER TOPICS, Please visit KNOWLEDGE-KORRIDOR our Virtual Library

Tuesday, October 31, 2017

Classical and Jazz musicians show different brain responses to unexpected events, study finds 10-31





Scientists at Wesleyan University have used electroencephalography to uncover differences in how the brains of Classical and Jazz musicians react to an unexpected chord progression.

Their new study, published in the journal Brain and Cognition, sheds new light on the nature of the creative process.

“I have been a classical musician for many years, and have always been inspired by the great jazz masters who can improvise beautiful performances on the spot,” explained study author Psyche Loui. “Whenever I tried to improvise I always felt inhibited and self-conscious, and this spurred my questions about jazz improvisation as a model for creativity more generally: What makes people creative improvisers, and what can this tell us about how we can all learn to be more creative?”

The researchers used EEG to compare the electrical brain activity of 12 Jazz musicians (with improvisation training), 12 Classical musicians (without improvisation training), and 12 non-musicians while they listened to a series of chord progressions. Some of the chords followed a progression that was typical of Western music, while others had an unexpected progression.

Louie and her colleagues found that Jazz musicians had a significantly different electrophysiological response to the unexpected progression, which indicated they had an increased perceptual sensitivity to unexpected stimuli along with an increased engagement with unexpected events.

“Creativity is about how our brains treat the unexpected,” Loui told PsyPost. “Everyone (regardless of how creative) knows when they encounter something unexpected. But people who are more creative are more perceptually sensitive and more cognitively engaged with unexpectedness. They also more readily accept this unexpectedness as being part of the vocabulary.

“This three-stage process: sensitivity, engagement, and acceptance, occurs very rapidly, within a second of our brains encountering the unexpected event. With our design we can resolve these differences and relate them to creative behavior, and I think that’s very cool.”

Previous research has found that Jazz improvisers and other creative individuals show higher levels of openness to experience and divergent thinking — meaning the ability to “think outside the box.”

But without additional research it is unclear if the new findings apply to other creative individuals who are not musicians.

“We looked at three groups of subjects: jazz musicians, classical musicians, and people with no musical training other than normal schooling, so the results are most closely tied to musical training. It remains to be seen whether other types of creative groups, e.g. slam poets, cartoonists, interpretive dancers, etc. might show the same results,” Loui explained.

“It would also be important to find out whether these differences emerge as a result of training, or whether they reflect pre-existing differences between people who choose to pursue training in different styles. We are currently conducting a longitudinal study to get at that question.”

“This is the first paper of a string of research coming from our lab that use different methodologies to understand jazz improvisation,” Loui added. “We are also doing structural and functional MRI, as well as more behavioral testing, including psychophysical listening tests and also production tests, where we have people play music in our lab.”

The study, “Jazz musicians reveal role of expectancy in human creativity“, was also co-authored by Emily Przysinda, Tima Zeng, Kellyn Maves, and Cameron Arkin. 


View at the original source 

Friday, October 27, 2017

A step forward in DNA base editing 10-27

Technique has potential to help reverse the most common type of disease-associated mutations.



























Harvard and Broad Institute researchers have developed a DNA base editor that transforms A•T base pairs into G•C base pairs, and could one day be used to treat many common genetic diseases.

Scientists at Harvard University and the Broad Institute of MIT and Harvard have developed a new class of DNA base editor that can alter genomic structure to help repair the type of mutations that account for half of human disease-associated point mutations. These mutations are associated with disorders ranging from genetic blindness to sickle-cell anemia to metabolic disorders to cystic fibrosis.

A team of researchers led by David Liu, professor of chemistry and chemical biology at Harvard University and a core institute member of the Broad, developed an adenine base editor (ABE) capable of rearranging the atoms in a target adenine (A), one of the four bases that make up DNA, to resemble guanine (G) instead, and then tricking cells into fixing the other DNA strand to make the change permanent. The result is that what had been an A•T base pair is changed to a G•C base pair. The new system is described in a paper published online in the journal Nature.




In addition to Liu, the study was led by Nicole Gaudelli, a postdoctoral fellow in Liu’s lab; Alexis Komor, a former postdoctoral fellow in Liu’s lab who is now an assistant professor at the University of California, San Diego; graduate student Holly Rees; and former postdoctoral fellows Ahmed H. Badran and David I. Bryson.

The new system transforms A•T base pairs into G•C base pairs at a target position in the genome of living cells with surprising efficiency, the researchers said, often exceeding 50 percent, with virtually no detectable byproducts such as random insertions, deletions, translocations, or other base-to-base conversions. The adenine base editor can be programmed by researchers to target a specific base pair in a genome using a guide RNA and a modified form of CRISPR-Cas9 that no longer cuts double-stranded DNA.

Being able to make this type of conversion is particularly important because approximately half of the 32,000 disease-associated point mutations already identified by researchers are a change from a G•C base pair to a A•T base pair.

Liu said that particular change is unusually common in part because about 300 times a day in every human cell, a spontaneous chemical reaction converts a cytosine (C) base into uracil (U), which behaves like thymine (T). While there are natural cellular repair mechanisms to fix that spontaneous change, the machinery is not perfect and occasionally fails to make the repair. The result can be the mutation of the G•C base pair to an A•U or A•T base pair, which can lead to certain genetic diseases.

“Because of this slight chemical instability of the Cs in our genome, about 50 percent of pathogenic point mutations in humans are of the type G•C to A•T,” said Liu said. “What we’ve developed is a base editor, a molecular machine, that in a programmable, irreversible, efficient, and extremely clean way can correct these mutations in the genome of living cells. For some target sites, that conversion reverses the mutation that is associated with a particular disease.”

A major addition to genome-editing technologies, the adenine base editor joins other base-editing systems recently developed in Liu’s lab, such as BE3 and its improved variant, BE4. Using these base editors, researchers can now correct all the so-called “transition” mutations — C to T, T to C, A to G, or G to A — that together account for almost two-thirds of all disease-causing point mutations, including many that cause serious illnesses that currently have no treatment. Additional research is needed to enable the adenine base editor to target as much of the genome as possible, as Liu and his students previously did through engineering variants of BE3.

At first glance, Liu said, it might appear as though developing the adenine base editor would be a straightforward process: Simply replace the enzyme in BE3 that performs the “chemical surgery” to transform C into U with one that could convert A into I (inosine), a nucleotide that behaves similarly to G. Unfortunately, he said, there is no such enzyme that works in DNA, so Liu and colleagues made the unusual choice to evolve their own DNA adenine deaminase, a hypothetical enzyme that would convert A to I in DNA.

“This wasn’t a small decision, because we’ve had a longstanding rule in the lab that if step one of your project is to evolve the starting material that’s needed for the rest of the project to begin, that’s not a very good project, because it’s really two major projects,” Liu said. “And if you have to spend years just to get the starting material for the rest of your project, that’s a tough road.

“In this case, we felt the potential impact was significant enough to break the rule, and I’m very fortunate that Nicole [Gaudelli] was brave enough to take on the challenge.”

The stakes were particularly high for Gaudelli, Liu said, “because if we weren’t able to complete step one and evolve a DNA adenine deaminase, then step two wouldn’t go anywhere, and we would have little to show for all the work.”

“Protein evolution is still largely an art as much as it is a science,” Liu said. “But Nicole has amazing instincts about how to interpret the results from each stage of protein evolution, and after seven generations of evolution, she succeeded in evolving a high-performance A base editor, which we call ABE7.10.”




The road that led to the adenine base editor required more than just evolving the starting material. After a year of work and several initial attempts that resulted in no detectable DNA editing of A•T base pairs, the team began to see the first glimmers of success, Liu said. Following three rounds of evolution and engineering, the adenine base editors were working deceptively well, until the team discovered that the system would only work on certain DNA sequences.

“At that point we could have pulled the trigger and reported a base editor that works well only at certain sites, but we thought the sequence requirements would really limit its usefulness and discourage others from moving the project forward, so we went back to the well of evolution. We changed the selections to force a base editor that would process all sites, regardless of their sequence,” Liu said. “That was a tough call, because at that point we had been working well over a year on the project, and it was very exciting that we were seeing any base editing on A•T base pairs in DNA at all.”

The team restarted its efforts with several additional rounds of evolution and engineering, now testing their adenine base editors against 17 genetic sequences that included all possible combinations of DNA bases surrounding the target A, Liu said. The final ABE7.10 variant edited sites with an average efficiency of 53 percent, and produced virtually no unwanted products.

To demonstrate the adenine base editor’s potential, Liu and colleagues used ABE7.10 to correct a mutation that causes hereditary hemochromatosis in human cells. They also used ABE7.10 to install a mutation in human cells that suppresses a disease, recreating the so-called “British mutation” found in healthy individuals who would normally develop blood diseases like sickle cell anemia. The mutation instead causes fetal hemoglobin genes to remain active after birth, protecting them from the blood diseases.

While the development of the adenine base editor is an exciting development in base editing, more work remains before base editing can be used to treat patients with genetic diseases, including tests of safety, efficacy, and side effects.

“Creating a machine that makes the genetic change you need to treat a disease is an important step forward, but it’s only one part of what’s needed to treat a patient,” Liu said. “We still have to deliver that machine, we have to test its safety, we have to assess its beneficial effects in animals and patients and weigh them against any side effects. We need to do many more things. But having the machine is a good start.”


View at the original source

Thursday, October 26, 2017

Asthma Cross Talk,Study reveals way nervous system communicates with immune system. 10-27






Exactly how asthma begins and progresses remains a mystery, but a team of Harvard Medical School researchers has uncovered a fundamental molecular cue that the nervous system uses to communicate with the immune system, which may potentially trigger allergic lung inflammation leading to asthma.
Their insights into this neuro-immune cross talk are published Sept. 13 in Nature.

“Our findings help us understand how the nervous system is communicating with the immune system, and the consequences of it,” said co-senior author Vijay Kuchroo, the HMS Samuel L. Wasserstrom professor of neurology and senior scientist at Brigham and Women’s. The team included  researchers at Harvard Medical School, Brigham and Women’s Hospital, and the Broad Institute of MIT and Harvard

Kuchroo is also an associate member of the Broad and the founding director of the Evergrande Center for Immunologic Diseases of HMS and Brigham and Women’s.

“What we’re seeing is that neurons in the lungs become activated and produce molecules that convert immune cells from being protective to being inflammatory, promoting allergic reactions,” he said.

The research team—led by Patrick Burkett, HMS instructor in medicine and a pulmonologist and researcher at Brigham and Women’s; Antonia Wallrapp an HMS visiting graduate student in neurology at the Evergrande Center; Samantha Riesenfeld, HMS research fellow in neurology in the Klarman Cell Observatory (KCO) at the Broad; Monika Kowalczyk of the KCO; Aviv Regev, Broad core institute member and KCO director; and Kuchroo—closely examined lung-resident innate lymphoid cells (ILCs), a type of immune cell that can play a role in maintaining a stable environment and barrier in the lungs but can also promote the development of allergic inflammation.

Single-cell RNA sequencing

Using a technique known as single-cell RNA sequencing, the team explored more than 65,000 individual cells that exist under normal or inflammatory conditions, looking for genes that were more active in one state or subpopulation versus another.

“By surveying thousands of individual cells, we were able to define the transcriptional landscape of lung-resident ILCs, observing changes in discrete subpopulations,” said Kowalczyk.

“To really understand the puzzle that is allergy and asthma, we need to closely examine each of the pieces individually and understand how they fit together into an ecosystem of cells,” said Regev. “That’s what single-cell analysis lets you do. And when you look this closely, you find that pieces that you thought were quite similar are subtly but profoundly different. Then you start to see where each piece really goes.”

Among many distinguishing genes they found, one in particular stood out: Nmur1, a receptor for the neuropeptide NMU.

In laboratory and animal model experiments, the team confirmed that NMU signaling can significantly amplify allergic inflammation when high levels of alarmins—molecules known to trigger immune responses—are present.

The team also observed that ILCs co-located with nerve fibers in the lung. Neurons in the lung can induce smooth muscle contractions that manifest themselves as coughing and wheezing, two central symptoms of asthma.

Coughing and inflammation

“Coughing is something regulated and controlled by the nervous system so it’s intriguing that our findings point to a role for NMU, which can induce both smooth muscle contraction and inflammation,” said Burkett.

Interestingly, two additional Nature papers released simultaneously with the Regev and Kuchroo team’s study revealed that ILC2 cells in the gut also express Nmur1, take on an inflammatory state when exposed to NMU and live in close proximity to NMU-producing nerve cells.

“We anticipate that the NMU-NMUR1 pathway will also play a critical role in amplifying allergic reactions in the gut and promote development of food allergies,” said Kuchroo.

In addition to uncovering a novel neuro-immune pathway that leads to inflammation, the team also hopes their findings will lead to new therapeutic insights for how to potentially prevent or treat allergic asthma.

“We may have identified a way of blocking allergic lung inflammation by controlling neuropeptide receptors,” said Riesenfeld. “This work represents a mechanistic insight that could lead to the development of a new therapeutic approach for preventing asthma.”

“All forms of allergy and inflammation involve complex interactions between many cells and tissues,” Regev added. “Working collaboratively to identify and catalog all these various players and listening to what they say to each other can teach us surprising things about how allergies work and show us new opportunities to intervene.”


Support for this study was provided by the Food Allergy Science Initiative; the Klarman Family Foundation; the National Institute of Allergy and Infectious Diseases; the National Heart, Lung, and Blood Institute; the Howard Hughes Medical Institute; and other sources. 


View at the original source

How We’re Smart 10-27


We’re all intelligent in multiple and varying ways, and we can grow those intelligences, too....






People have a wide range of capacities. What if, instead of asking, “How smart am I?” we encouraged kids to ask, “How am I smart?”

Here, we provide an overview of that work on intelligence — along with ways that educators can bring these ideas into their own classrooms.

Intelligence is Multiple

What if, instead of asking, “How smart am I?” we encouraged kids to ask, “How am I smart?”
People have a wide range of capacities, and there are many ways to be smart. In his foundational work on multiple intelligence theory, educational psychologist and Project Zero pioneer Howard Gardner has identified eight distinct intelligences:
  • Verbal
  • Logical/mathematical
  • Bodily-kinesthetic
  • Musical
  • Spatial
  • Interpersonal
  • Intrapersonal
  • Naturalistic
Everyone possess all of these intelligences, but we also each have unique strengths and weaknesses. Some people have strong verbal and musical intelligence but weak interpersonal intelligence; others may be adept at spatial recognition and math but have difficulty with bodily-kinesthetic intelligence. And everyone is different; strength in one area does not predict strength in any other.

These intelligences can also work together. Different tasks and roles usually require more than one type of intelligence, even if one is more clearly highlighted.
Furthermore, we can exhibit our intelligences through our ideas, creations, and performances — but test scores do not necessarily measure any sort of intelligence.

For educators, the lesson here is that students learn differently, and express their strengths differently. “If we all had exactly the same kind of mind and there was only one kind of intelligence, then we could teach everybody the same thing in the same way and assess them in the same way and that would be fair,”

Gardner has said. “But once we realize that people have very different kinds of minds, different kinds of strengths … then education, which treats everybody the same way, is actually the most unfair education.”

Intelligence is Learnable

These multiple intelligences are not fixed or innate. They’re partially the result of our neural system and biology, but they also develop through our experiences and through our ability to persist, imagine, and reflect. 

Learning expert Shari Tishman and her Project Zero colleagues have highlighted seven key critical thinking mindsets that can set us up to effectively learn and think in today’s world:
  • Being broad and adventurous
  • Wondering, problem finding, and investigating
  • Building explanations and understandings
  • Making plans and being strategic
  • Being intellectually careful
  • Seeking and evaluating reasons
  • Being metacognitive
By embracing these mindsets, we can actually shape and cultivate our intelligences. For example, being open-minded and careful in our thinking, as opposed to being closed-minded and careless, can be predictive of flexing and growing our intelligences.


View at the original source




Tuesday, October 24, 2017

AI in the Boardroom: The Next Realm of Corporate Governance 10-25



Just as artificial intelligence is helping doctors make better diagnoses and deliver better care, it is also poised to bring valuable insights to corporate leaders — if they’ll let it. 




Image Credit : Shyam's Imagination Library



At first blush, the idea of artificial intelligence (AI) in the boardroom may seem far-fetched. After all, board decisions are exactly the opposite of what conventional wisdom says can be automated. Judgment, shrewdness, and acumen acquired over decades of hard-won experience are required for the kinds of complicated matters boards wrestle with. But AI is already filtering into use in some extremely nuanced, complicated, and important decision processes.


Consider health care. Physicians, like executives and board members, spend years developing their expertise. They evaluate existing conditions and deploy treatments in response, while monitoring the well-being of those under their care.

Today’s medical professionals are wisely allowing AI to augment their decision-making. Intelligent systems are enabling doctors to make better diagnoses and deliver more individualized treatments. These systems combine mapping of the human genome and vast amounts of clinical data with machine learning and data science. They assess individual profiles, analyze research, find patterns across patient populations, and prioritize courses of action. The early results of intelligent systems in health care are impressive, and they will grow even more so over time. In a recent study, physicians who incorporated machine-learning algorithms in their diagnoses of metastatic breast cancer reduced their error rates by 85%. Indeed, by understanding how AI is transforming health care, we can also imagine the future of how corporate directors and CEOs will use AI to inform their decisions.

Complex Decisions Demand Intelligent Systems


Part of what’s driving the use of AI in health care is the fact that the cost of bad decisions is high. That’s the same in business, too: Consider that 50% of the Fortune 500 companies are forecasted to fall off the list within a decade, and that failure rates are high for new product launches, mergers and acquisitions, and even attempts at digital transformation. Responsibility for these failures falls on the shoulders of executives and board members, who concede that they’re struggling: A 2015 McKinsey study found that only 16% of board directors said they fully understood how the dynamics of their industries were changing and how technological advancement would alter the trajectories of their company and industry. The truth is that business has become too complex and is moving too rapidly for boards and CEOs to make good decisions without intelligent systems.

We believe that the solution to this complexity will be to incorporate AI in the practice of corporate governance and strategy. This is not about automating leadership and governance, but rather augmenting board intelligence using AI. Artificial intelligence for both strategic decision-making (capital allocation) and operating decision-making will come to be an essential competitive advantage, just like electricity was in the industrial revolution or enterprise resource planning software (ERP) was in the information age.

For example, AI could be used to improve strategic decision-making by tracking capital allocation patterns and highlighting concerns — such as when the company is decreasing spending on research and development while most competitors are increasing investment — and reviewing and processing press releases to identify potential new competitors moving into key product markets and then suggesting investments to protect market share. AI could be used to improve operational decision-making by analyzing internal communication to assess employee morale and predicting churn, and by identifying subtle changes in customer preference or demographics that may have product or strategy implications.

The Medical Model: Advances That Have Enabled AI in Health Care


What will it take for boards to get on board with AI supplements? If we go back to the health care analogy, there have been three technological advances that have been essential for the application of AI in the medical field:
  • The first advance is an enormous body of data. From the mapping of the human genome to the accumulation and organization of databases of clinical research and diagnoses, the medical world is now awash in vast, valuable new sources of information. 
  • The second advance is the ability to quantify an individual. Improvements in mobile technology, sensors, and connectivity now generate extraordinarily detailed insights into an individual’s health.
  • The third advance is the technology itself. Today’s AI techniques can assimilate massive amounts of data and discern relevant patterns and insights — allowing the application of the world of health care data to an individual’s particular health care situation. These techniques include advanced analytics, machine learning, and natural language processing.
As a result of the deployment of intelligent systems in health care, doctors can now map a patient’s data, including what they eat, how much they exercise, and what’s in their genetics; cross-reference that material against a large body of research to make a diagnosis; access the latest research on pharmaceuticals and other treatments; consult machine-learning algorithms that assess alternative courses of action; and create treatment recommendations personalized to the patient.

Three Steps Companies Can Take to Bring AI Into the Boardroom


A similar course will be required to achieve the same results in business. Although not a direct parallel to health care, companies have their own components — people, assets, history — which could be called the corporate genome. In order to effectively build an AI system to improve corporate decision-making, organizations will need to develop a usable genome model by taking three steps:

Create a body of data by mapping the corporate genome of many companies and combine this data with their economic outcomes

Develop a method for quantifying an individual company in order to assess its competitiveness and trajectory through comparison with the larger database; and

Use AI to recommend a course of action to improve the organization’s performance — such as changes to capital allocation.

Just as physicians use patient data to create individualized medical solutions, emerging intelligent systems will help boards and CEOs know more precisely what strategy and investments will provide exponential growth and value in an increasingly competitive marketplace. Boards and executives with the right competencies and mental models will have a real leg up in figuring out how to best utilize this new information. While technology is growing exponentially, leaders and boards are only changing incrementally, leaving many legacy organizations further and further behind.

It’s time for leaders to courageously admit that, despite all their years of experience, AI belongs in the boardroom.




View at the original source
















Friday, October 20, 2017

How to defend against your own mind 20-10



Image credit: Shyam's Imagination Library


New project to use podcasts, video to illuminate bias, improve decision-making. 

When it comes to some of the most important decisions we make — how much to bid for a house, the right person to hire, or how to plan for the future — there is strong scientific evidence that our brains play tricks on us.




Luckily, Mahzarin Banaji has a solution: Understand how your mind works so that you can learn to outsmart it.

The Richard Clarke Cabot Professor of Social Ethics and chair of the Department of Psychology is launching a new project — dubbed Outsmarting Human Minds — aimed at using short videos and podcasts to expose hidden biases and explore ways to combat them.

“The behavioral sciences give us insights into what gets in the way of reaching our professional goals, of being true to our own deepest values,” Banaji said. “The science is not new, but its message is still one most people have difficulty grasping and understanding.”

Banaji and research fellow Olivia Kang, with funding from PricewaterhouseCoopers (PwC) and a grant from Harvard’s Faculty of Arts and Sciences, developed Outsmarting Human Minds as a way to deliver up-to-date thinking about hidden biases in an engaging way.

“Everyone wants to know what’s happening in their minds, and they want to know what they can do to make better decisions,” Kang said. “The science is out there; the challenge is getting it to the public in a way that captures their interest.”




The impetus for the project came in part from Banaji’s perspective as a senior adviser on faculty development to Edgerley Family Dean of the Faculty of Arts and Sciences Michael D. Smith.

Speaking of that role, Banaji said, “I try to expose what the mind sciences have taught us about how we make decisions. The hope is that the faculty will put this information to use … in decisions about how to imagine the future of their disciplines.”

Banaji has taught on decision-making to any number of organizations, including corporations, nonprofits, and the military. Questions about how to confront hidden biases are common.



“I want to put the science in the hands of people — or rather, in the heads of people — and have them ask: How can I outsmart my own mind? How can I be the person I want to be?”

She emphasized that watching a video or listening to a podcast isn’t enough to address hidden bias.
“Learning brings awareness and understanding. It cannot itself put an end to the errors we make,” she said. “To achieve corrections that will matter to society, we must learn to behave differently.”

Said Kang: “We want to deliver this information to people in a way that doesn’t make them feel that they’re a bad person if they have these biases. The fact is, we all do. This is about acknowledging that hidden biases are a product of how we’re wired and the culture we live in. And then agreeing that we want to do something about it — that we can use this knowledge to improve the decisions we make in life and at work.”

View at the original source

The Future of AI and Big Data with Quantum Computing 10-20






With the boom in digital technologies, the world is producing over 2.5 exabytes of data every day. To put that into perspective, it is equivalent to the memory of 5 million laptops or 150 million phones. The deluge of data is forecast to increase with the passing day and with it has increased the need for powerful hardware that can support it.

This hardware advancement refers to faster computing or processing speed and larger storage systems. Companies worldwide are investing in powerful computing with the R&Ds constantly in the race for making improved processors. The current stream of data needs computers that can perform complex calculations within seconds.

Big data and Machine learning have pushed the limits of current IT infrastructure for processing large datasets effectively. This has led to the development of a new and exciting paradigm of quantum computing that has the power to dramatically increase the speed. But before that, let us understand the current technology and the need for quantum technology.

Current Computing Technology and Its Limitations
The technology of processing has come a long way in the past couple of years with the development of finger-nail sized microprocessors (single-chip computer packed with millions of transistors) called integrated circuits. Standing true to Moore’s law, the number of transistors packed in a single chip has doubled every 18 months since the past 50 years. Today, it has reached 2 billion transistors in one chip.

The semiconductor technology is now making smallest chips with 5 nanometer-sized gates below which it is said the transistor will not work. Now, the industry has simply started increasing the number of processor “cores” so that the performance continues on Moore’s law predictions. However, there come many other software-level restraints to keep this relevant.

In 2016, two researchers at Lawrence Berkeley National Laboratory created the world’s smallest transistor with gate size of one nanometer. This is a phenomenal feat in computing industry but making a chip with billions of such transistors is going to face many challenges. The industry has already prepared for transistors to stop shrinking further and Moore’s law is likely to come to a stagnant halt.

As the computations pertaining to current applications like big data processing or intelligent systems get more complex, there is a need for higher and faster computing capabilities than the current processors can supply. This is one of the reasons why people are looking forward to quantum computing.

What is Quantum Computing
Quantum Computing merges two great scientific revolutions of this century: computer science and quantum physics. It has all the elements of conventional computing like bits, registers, gates, etc. but on the machinery level, it does not depend on boolean logic. The quantum bits are called qubits. The conventional bits can store 0 or 1 but quantum bits can store 0, 1 and all the possible values (states) between it simultaneously. As it can store the values, it can also process them simultaneously. It can work in parallel doing multiple things at the same time which makes it million times faster than the current computers.

The working of these computers is little complex and the entire field of quantum computing is still largely abstract and theoretical. The only thing we really need to know is that qubits are stored by atoms or other particles like ions that exist in different states and can be switched between these states.

Application in Big Data
The progress in these fields critically relies on processing power. The computational requirement of big data analytics is currently placing a considerable strain on computer systems. Since 2005, the focus has been shifted to parallelism using multiple cores instead of a single fast processor. However, many problems in big data cannot be solved simply by using more and more cores.  Splitting up the work among multiple processors is used but its implementation is complex. The problems need to be solved sequentially where the preceding step is equally important.

At the Large Hadron Collider (LHC) at CERN, Geneva particles are accelerated, traveling at almost the speed of light within a 27km ring such that 600 million collisions take place in a second wherein only one of the 1 million collisions chosen for preselection. In the preselection process, only 1 out of 10,000 events are passed to a grid of processor cores that further choose 1 out of 100 possible events, hence, making the data process at 10GB/s. At LHC, 5 trillion bits of data is captured every second and after discarding 99% of the data, it still analyses 25 petabytes of data a year!

Such is the power of quantum computing but the current resources make the application of it in big data, a thing of the future. If it were possible, the computing would be useful for specific tasks such as factoring large numbers that are useful in cryptography, weather forecasting, searching through large unstructured datasets in a fraction of the time to identify patterns and anomalies, etc. The developments in quantum computing could actually make encryption obsolete in a jiffy.
With such computing powers, it would be one day possible to make large datasets that would probably store complete information such as – genetic of every single human that existed and machine learning algorithms could find patterns in the characteristics of these humans while also protecting the identities of the humans. Also, clustering and classification of data would become a much faster task.

Looking Forward
The initial results and developments in quantum technologies are encouraging. In the last fifteen years, quantum computers have grown from 4-qubits to 128 qubits. Google’s 5-qubit computer has demonstrated certain basic calculations; that if scaled up, can perform many complex calculations that will make the quantum computing dream come true one day. However, we are unlikely to see such computers for years or even decades.

The future says quantum computers will allow faster analysis and integration of our enormous data sets which will improve and transform our machine learning and artificial intelligence capabilities.

View at the original source

Tuesday, October 17, 2017

Why Entrepreneurs Should Care Less About Disrupting and More About Creating 10-18





Featured excerpt from WTF? What’s the Future and Why It’s Up to Us by Tim O’Reilly


If you’re an entrepreneur or aspiring to become one, Tim O’Reilly is the kind of mentor you should try to enlist. He’s been there and done that in the New Economy since, well, pretty much since there’s been a New Economy.

O’Reilly started writing technical manuals in the late 1970s, and by the early 1980s, he was publishing them, too. His company, O’Reilly Media Inc. (formerly O’Reilly R. Associates), based in Sebastopol, California, helped pioneer online publishing, and in the early 1990s, it launched the first web portal, Global Network Navigator, which AOL acquired in 1995.

Since then, O’Reilly has been an active participant in a host of developments from open source to Gov 2.0 to the maker movement. He is founding partner of San Francisco-based O’Reilly AlphaTech Ventures LLC, an early stage venture investor, and he sits on a number of boards, including Code for America Labs Inc., PeerJ, Civis Analytics Inc., and Popvox Inc. He has also garnered a huge Twitter following @timoreilly.

In his new book, WTF?, O’Reilly takes issue with the vogue for disruption. “The point of a disruptive technology is not the market or competitors that it destroys. It is the new markets and the new possibilities that it creates,” he writes. “I spend a lot of time urging Silicon Valley entrepreneurs to forget about disruption, and instead to work on stuff that matters.” In the following excerpt, edited for space, O’Reilly shares “four litmus tests” for figuring out what that means to you.

1. Work on something that matters to you more than money.

Remember that financial success is not the only goal or the only measure of achievement. It’s easy to get caught up in the heady buzz of making money. You should regard money as fuel for what you really want to do, not as a goal in and of itself.

Whatever you do, think about what you really value. If you’re an entrepreneur, the time you spend thinking about your values will help you build a better company. If you’re going to work for someone else, the time you spend understanding your values will help you find the right kind of company or institution to work for, and when you find it, to do a better job.

Don’t be afraid to think big. Business author Jim Collins said that great companies have “big hairy audacious goals.” Google’s motto, “access to all the world’s information,” is an example of such a goal.

There’s a wonderful poem by Rainer Maria Rilke that retells the biblical story of Jacob wrestling with an angel, being defeated, but coming away stronger from the fight. It ends with an exhortation that goes something like this: “What we fight with is so small, and when we win, it makes us small. What we want is to be defeated, decisively, by successively greater beings.”

The most successful companies treat success as a by-product of achieving their real goal, which is always something bigger and more important than they are. Former Google executive Jeff Huber is chasing this kind of bold dream of using technology to make transformative advances in health care. Jeff ’s wife died unexpectedly of an aggressive undetected cancer. After doing everything possible to save her and failing, he committed himself to making sure that no one else has that same experience. He has raised more than $100 million from investors in the quest to develop an early-detection blood test for cancer. That is the right way to use capital markets. Enriching investors, if it happens, will be a by-product of what he does, not his goal. He is harnessing all the power of money and technology to do something that today is impossible. The name of his company — Grail — is a conscious testament to the difficulty of the task. Jeff is wrestling with the angel.

2. Create more value than you capture.

It’s pretty easy to see that a financial fraud like Bernie Madoff wasn’t following this rule, and neither were the titans of Wall Street who ended up giving out billions of dollars in bonuses to themselves while wrecking the world economy. But most businesses that prosper do create value for their community and their customers as well as themselves, and the most successful businesses do so in part by creating a self-reinforcing value loop with and for others. They build or are part of a platform on which people who don’t work directly for them can build their own dreams.

Investors as well as entrepreneurs must be focused on creating more value than they capture. A bank that loans money to a small business sees that business grow, perhaps borrow more money, hire employees who make deposits and take out loans, and so on. An investor who bets on the future of an unproven technology can do the same. The power of this cycle to lift people out of poverty has been demonstrated for centuries.

If you’re succeeding at the goal of creating more value than you capture, you may sometimes find that others have made more of your ideas than you have yourself. It’s OK. I’ve had more than one billionaire (and an awful lot of start-ups who hope to follow in their footsteps) tell me how they got their start with a couple of O’Reilly books. I’ve had entrepreneurs tell me that they got the idea for their company from something I’ve said or written. That’s a good thing.

Look around you: How many people do you employ in fulfilling jobs? How many customers use your products to make their own living? How many competitors have you enabled? How many people have you touched who gave you nothing back?

3. Take the long view.

The musician Brian Eno tells a story about the experience that led him to conceive of the ideas that led to the Long Now Foundation, a group that works to encourage long-term thinking. In 1978, Brian was invited to a rich acquaintance’s housewarming party, and as the neighborhood his cab drove through became dingier and dingier, he began to wonder if he was in the right place. “Finally [the driver] stopped at the doorway of a gloomy, unwelcoming industrial building,” he wrote. “Two winos were crumpled on the steps, oblivious. There was no other sign of life in the whole street.”
But he was at the right address, and when he stepped out on the top floor, he discovered a multimillion-dollar palace.

“I just didn’t understand,” he said. “Why would anyone spend so much money building a place like that in a neighborhood like this? Later I got into conversation with the hostess. ‘Do you like it here?’ I asked. ‘It’s the best place I’ve ever lived,’ she replied. ‘But I mean, you know, is it an interesting neighborhood?’ ‘Oh — the neighborhood? Well ... that’s outside!’ she laughed.”

In the talk many years ago where I first heard him tell this story, Brian went on to describe the friend’s apartment, the space she controlled, as “the small here,” and the space outside, full of winos and derelicts, as “the big here.” He went on from there, along with others, to come up with the analogous concept of the Long Now. We need to think about the long now and the big here, or one day our society will enjoy neither.

It’s very easy to make local optimizations, but they eventually catch up with you. Our economy has many elements of a Ponzi scheme. We borrow from other countries to finance our consumption, and we borrow from our children by saddling them with debt, using up nonrenewable resources, and failing to confront great challenges in income inequality, climate change, and global health.

Every new company trying to invent the future has to think long-term. What happens to the suppliers whose profit margins are squeezed by Walmart or Amazon? Are the lower margins offset by higher sales or do the suppliers faced with lower margins eventually go out of business or lack the resources to come up with innovative new products? What happens to driver income when Uber or Lyft cuts prices for consumers in an attempt to displace competitors? Who will buy the products of companies that no longer pay workers to create them?

It’s essential to get beyond the idea that the only goal of business is to make money for its shareholders. I’m a strong believer in the social value of business done right. We should aim to build an economy in which the important things are a natural outcome of the way we do business, paid for in self-sustaining ways rather than as charities to be funded out of the goodness of our hearts.
Whether we work explicitly on causes and the public good, or work to improve our society by building a business, it’s important to think about the big picture, and what matters not just to us, but to building a sustainable economy in a sustainable world.

4. Aspire to be better tomorrow than you are today.

I’ve always loved the judgment of Kurt Vonnegut’s novel Mother Night: “We are what we pretend to be, so we must be careful about what we pretend to be.” This novel about the postwar trial of a Nazi propaganda minister who was secretly a double agent for the Allies should serve as a warning to those (politicians, pundits, and business leaders alike) who appeal to people’s worst instincts but console themselves with the thought that the manipulation is for a good cause.

But I’ve always thought that the converse of Vonnegut’s admonition is also true: Pretending to be better than we are can be a way of setting the bar higher, not just for ourselves but for those around us.

People have a deep hunger for idealism. The best entrepreneurs have the courage that comes from aspiration, and everyone around them responds to it. Idealism doesn’t mean following unrealistic dreams. It means appealing to what Abraham Lincoln so famously called “the better angels of our nature.”

That has always been a key component of the American dream: We are living up to an ideal. The world has looked to us for leadership not just because of our material wealth and technological prowess, but because we have painted a picture of what we are striving to become.
If we are to lead the world into a better future, we must first dream of it.

View at the original source

North Korean doomsday weapon could kill up to 90% of Americans, experts warn experts, 10-17




US officials have been given a stark warning about the potential dangers of a nuclear electromagnetic pulse (EMP) bomb triggered by reclusive North Korea .

According to experts, such a blast could end up killing 90% of Americans indirectly by knocking out the power grid and all electrical devices within the blast radius.

Dr. William R. Graham and Dr. Peter Vincent Pry from the EMP Commission outlined to the US House of Representatives the dangers faced by a detonation - which is when a hydrogen bomb is detonated at an altitude of between 30 and 400km above a target. Such a weapon would knock out things like refrigeration for food storage, electrical lights and communication and water processing.

"With the development of small nuclear arsenals and long-range missiles by new, radical U.S. adversaries, beginning with North Korea, the threat of a nuclear EMP attack against the U.S. becomes one of the few ways that such a country could inflict devastating damage to the United States," the pair warned in a written statement .

"It is critical, therefore, that the U.S. national leadership address the EMP threat as a critical and existential issue, and give a high priority to assuring the leadership is engaged and the necessary steps are taken to protect the country from EMP."

Dr. Graham, a former science advisor to president Reagan and Dr. Pry, a former CIA officer, urged president Trump to prepare for a possible EMP strike.

They also warned that North Korea's weaponry is becoming more of an issue as the reclusive nation continues to schedule ICBM missile tests.

"The EMP Commission finds that even primitive, low-yield nuclear weapons are such a significant EMP threat that rogue states, like North Korea, or terrorists may well prefer using a nuclear weapon for EMP attack, instead of destroying a city."

The higher an EMP bomb is detonated, the wider the range of destruction.

At 400km (250 miles), an EMP bomb would be just under the orbit of the International Space Station and the resulting detonation would be enough to affect the majority of the US mainland.

View at the original source 



Please read thses also on north Korea



North Korea 'could kill almost four million people in Seoul and Tokyo with retaliatory nuclear attack' 

“Creative diplomacy is vital to defuse Korean crisis”




Time to Accept Reality and Manage a Nuclear-Armed North Korea   




Sunday, October 15, 2017

45 Junior Engineering Assistant Vacancy at Indian Oil Corporation Limited (IOCL) – Last Date 31 October 2017



Indian Oil Corporation Limited (IOCL) invites Application for the post of 45 Junior Engineering Assistant on contract basis at Mathura Refinery, Uttar Pradesh. Apply Online before 31 October 2017. Official website is iocl.com – Qualification/ eligibility conditions, how to apply & other rules are given below…

Advt. No. : MR/HR/RECT/JEA(ALL INDIA)/2017

IOCL Job Details :
  • Post Name : Junior Engineering Assistant
  • No of Vacancy : 45 Posts
  • Pay Scale : Rs. 11900-32000/-
Discipline wise Vacancy : 
  1. Chemical : 15 Posts
  2. Electrical : 07 Posts
  3. Mechanical : 13 Posts
  4. Instrumentation : 09 Posts
  5. Fire & Safety : 01 Post
Eligible Criteria for IOCL Recruitment :
  • Educational Qualification : 3 years Diploma in Electrical/Mechanical/Instrumentation/Instrumentation & Electronics / Instrumentation and Control Engineering from a recognized Institute/University OR 3 years Diploma in Chemical/Refinery & Petrochemical Engg. Or BSc (Maths, Physics, Chemistry or Industrial Chemistry) from a recognized Institute/University.
  • Age Limit : Minimum & Maximum age limit is 18 to 26 years as on 31.10.2017
Job Location : Mathura (Uttar Pradesh)

IOCL Selection Process : Selections will be based on Written Test and a Skill/Proficiency/Physical Test(SPPT).

Application Fee : General and OBC candidates have to pay Rs.150/-  though Online mode using either Debit/Credit Card or through Net-Banking only. SC/ST/PwD/ExSM candidates are exempted from payment of application fee.

How to Apply IOCL Vacancy : Interested candidates may apply Online through the website https://www.iocl.com form 09.10.2017 to 31.10.2017. Candidates may also send hard copy of Online application along with self attested copies of all supporting documents by ordinary post to DGM(HR), HR
Dept, Administration Building, Mathura Refinery, Mathura, Uttar Pradesh-281005 on or before 07.11.2017.
Important Dates to Remember :
  • Starting Date for Submission of Online Application : 09.10.2017
  • Last Date for Submission of Online Application : 31.10.2017
  • Last Date for Submission of Hard Copy of Online Application : 07.11.2017
Important Links :

Saturday, October 14, 2017

Will Human Innovation Save Us From Future Extinction? 10-15





Does the human ability to innovate suggest an immunity to total extinction?

Yes and no. Currently, innovation reduces our chance of extinction in some ways, and increases it in others. But if we innovate cleverly, we could become just about immune to extinction.


The species that survive mass extinctions tend to share three characteristics.They're widespread. This means local disasters don't wipe out the entire species, and some small areas, called refugia, tend to be unaffected by global disasters. If you're widespread, it's more likely that you have a population that happens to live in a refugium. 

They're ecological generalists. They can cope with widely varying physical conditions, and they're not fussy about food.

They're r-selected. This means that they breed fast and have short generation times, which allows them to rapidly grow their populations and adapt genetically to new conditions.

Innovation gives humans the ability to be widespread ecological generalists. With technology, we can live in more diverse conditions and places than any other species. And while we can't (currently) grow our populations rapidly like an r-selected species, innovation does allow us to adapt quickly at the cultural level.

Technology also increases our connections to one another and connectivity is a two-edged sword. Many species consist of a network of small, local populations, each of which is somewhat isolated from the others. We call this a metapopulation. The local populations often go extinct, but they are later re-seeded by others, so the metapopulation as a whole survives. 

Humans used to be a metapopulation, but thanks to innovation, we're now globally connected. Archaeologists believe that many past civilizations, such as the Easter Islanders, fell because of unsustainable ecological and cultural innovations. The impact of these disasters was limited because these civilizations were small and disconnected from other such civilizations.

These days, a useful innovation can spread around the world in weeks. So can a lethal one. With many of the technologies and chemicals we're currently inventing, we can't be certain about their long-term effects; human biology is complex enough that we often can't be absolutely certain something won't kill us in a decade until we've waited a decade to see. We try to be careful and test things before they're released, and the probability that any particular invention could kill us all is tiny, but since we're constantly innovating, it's a real possibility.

Pandemics pose the same problem for a well-connected species. There are certain possibilities where species extinction is really hard to avoid; fortunately, they're also very unlikely, but we are definitely not immune from this.

The most likely cause of our extinction, in my opinion, is innovation in machine learning/AI. This could destroy the planet, but even if it doesn't, humans will be ultimately redundant to the dominant systems. They might keep us alive in a zoo somewhere, but I doubt it. A happier scenario (to me at least) is transhumanism, where humans become extinct in a sense because we've managed to liberate ourselves from biology.

So how could innovation prevent our extinction? We seed the galaxy with independently evolving human populations to create a new metapopulation. These local populations would hopefully be sufficiently isolated that some would survive an innovation or disaster that wipes out the rest. They would, of course, evolve in response to local conditions, perhaps creating several new species. So you could say this is still extinction, but it's as close as we'll come to persistence in our ever-changing universe. 

How to find Happiness at work 10-15








Image: Shyam's Imagination Library

Happiness is in short supply at work these days. Deadlines, staff shortages, productivity pressures and crazy stress push even the most talented and temperate people to want to quit their jobs. But that’s not a realistic option, even for folks in the C-suite. Annie McKee, director of the Penn CLO and Medical Education programs at the University of Pennsylvania where she teaches leadership and emotional intelligence, has a better idea. In her book, How To Be Happy At Work, she outlines three requirements that workers need to feel more fulfilled on the job. McKee spoke about the concepts in her book on the Knowledge@Wharton show on SiriusXM channel 111. (Listen to the podcast at the top of this page.)

 The following is an edited transcript of the conversation.

Knowledge@Wharton: How many people do you think are not happy at work?

Annie McKee: I don’t think we even have to guess. Gallup has been studying people for years, and upwards of two-thirds of us are either neutral, which means we don’t care, or we’re actively disengaged. Disengagement and happiness go hand in hand, so an awful lot of people are not happy at work. Unhappy people don’t perform as well as they could. When we’re negative, cynical, pessimistic, we simply don’t give our all, and our brains don’t work that well just when we need people’s brains to be working beautifully.

Knowledge@Wharton: Has this problem ramped up in the last two decades or so? As much as digital is phenomenal for us, a lot of people feel under pressure because of what digital does to accelerate change.

McKee: The world is changing at a rapid pace, obviously. As much as we love our always-connected world, it can mean that we work all of the time. We’re always one minute away from that next email that’s going to bring tragedy or crisis to our working lives. Some of us never turn it off, and that’s not good for us.

Knowledge@Wharton: Where did your idea for the book come from?

McKee: I’ve worked in organizations all over the world for decades now. I’ve looked at leadership practices, emotional intelligence, culture and all of those things that impact the bottom line and people’s individual effectiveness. I decided to take another look and see what people were trying to tell us. All of these studies that we did around the world were practical studies. People were telling us, “I want to be happy, I want to be fulfilled, I want to love my job, I’m not as happy or as fulfilled as I could be, and here is what I need.” And then they went on to tell us what they need.

Knowledge@Wharton: Are executives aware of their employees’ problems? Are they also aware that they may susceptible to this?
“Unhappy people don’t perform as well as they could.”
McKee: It doesn’t matter where you sit in the organization, you are susceptible to disengagement and unhappiness even at the very top. We think if you’re making all of that money and you’ve got all of that power and that great job, it’s going to be perfect. The best leaders in our organizations, at the very top and all the way down to the shop floor, understand that people matter, feelings matter, and it’s job number one to create a climate where people feel good about what they’re doing where they’re happy, engaged and ready to share their talents.

Knowledge@Wharton: What are the key ingredients to finding that happiness?

McKee: From my work, I’ve discovered three things. Number one, people feel that they need to have impact on something that is important to them, whether it’s people or a cause or the bottom line. They need to feel that their work is purposeful, and it’s tied to values that they care about.
Number two, we need to feel optimistic that our work is tied to a personal vision of the future. The organization’s vision isn’t enough. As good as it may be, we have to know that what we’re doing ties to a personal vision of our future.

Number three, we need friends at work. We’ve learned over the course of our lives you shouldn’t be friends with people at work, that it’s dangerous somehow, that it will cloud your judgment. I don’t agree. I think we need to feel that we are with our tribe in the workplace, that we belong, that we’re with people that we respect and who respect us in return. We need warmth, we need caring, and we need to feel supported.

Knowledge@Wharton: I would think most people looking for a job, whether they are coming out of college or shifting careers mid-life, are looking for that area that would make them happy. When you have that expectation of being in the right sector to begin with, you hope that you have the happiness to go along with it.

McKee: We do hope that we get into the right organization and there’s a good fit between our values and the organization’s values. We really try hard. But we get in there and the pressures of everyday life, and the crises and the stress can really tamp down our enthusiasm and our happiness.

Also, a lot of us are susceptible to what I call happiness traps. We end up doing what we think we should do. We take that job with that fancy consulting firm or that wonderful organization not because we love it and not because it’s a fit, but because we think we should. Frankly, some of us have ambition that goes into overdrive. Ambition is a great thing, until it’s not.

Knowledge@Wharton: Is that part of the reason why we see more people who have been with a company for 20 years, 25 years and suddenly pivot? They may be going to work for a nonprofit. You see these stories popping up, especially with people in the C-suite.

McKee: You do see that. You see senior leaders all of a sudden saying, “Enough is enough, I [want to do] something different.” But I really want to be clear, you don’t always have to run away. In fact, you want to run towards something. If you feel you’re not happy in the workplace, quitting your job is probably not the first answer, and some of us can’t. What we need to do is figure out what we need, what we want, how to have impact, what will make us feel hopeful about our future, what kind of people we want to work with and for, and then go find that either in our organization or elsewhere.

Happiness starts inside each of us. It’s tempting to blame that toxic boss or that horrible organizational culture, and those things may be true. But if you want to be happy at work, you first have to look inside and ask what is it that you want? What will make you feel fulfilled? Which happiness traps have you fallen prey to? And get yourself out.

Knowledge@Wharton: What are the happiness traps?

McKee: There’s what I call the “should” trap. We do what we think we should do. We show up to work acting like someone we’re not. That is soul-destroying, and it’s fairly common. [There’s also] the “ambition” trap. When our ambition drives us from goal to goal and we don’t even stop to celebrate the accomplishment of those goals, something is wrong.

Some of us feel helpless, stuck. The “helplessness” trap may be the most serious of all. It’s really hard to get out of because we don’t feel we have any power. My message is we have a lot more power and control over not only our attitude but what we do and how we approach our work on a daily basis and in the long term than maybe we think we do.
“Ambition is a great thing, until it’s not.”
Knowledge@Wharton: Earlier in your life, you found yourself fitting into these patterns as well.
McKee: I did. Early in my life I wasn’t teaching in a wonderful institution like Penn. I didn’t even have what you would call a professional career. I had jobs like waiting tables and cleaning houses and taking care of elderly people. I was making ends meet. And it wasn’t easy.

I had two choices, I could either say to myself this is miserable and I hate it, or I could look for something that was fulfilling in what I did. I tried to do that. I did find aspects of my job, whether it was cleaning houses and feeling like I was doing a good job or finding a mentor in some of these workplaces, that really made it worthwhile to me.

Knowledge@Wharton: Do you have to be 100% happy all of the time? I think if you can find areas of happiness, it can make your job or your life so much easier to go through.
McKee: Happiness isn’t just about feeling good every moment of the day, and it’s not just about pleasure. That’s hedonism, and we’re not seeking that. Frankly, a little bit of stress is a good thing. It pushes us to be innovative and to do things differently and to push harder. So, it’s not about just feeling good. But we do need a foundation of purpose, hope and friendships. We do need to know that what we do matters at work, that we are doing something that is tied to our future, and that the people we work with are great.

Knowledge@Wharton: You mentioned taking the time to recognize your accomplishments, but there are companies that want you to push on to the next project. They don’t give you the opportunity to slow down even for an hour to enjoy it.

McKee: Most of our organizations are really hard-driving, especially publicly traded organizations. I’m not even sure they’re that different than other institutions these days. The pressure is on everywhere, and the reality is we do move from project to project, goal to goal. What choices can we make in the middle of that culture? We don’t have to be victims of our organizational culture, and we don’t have to be victims of that bad boss you might have or maybe you’ve had in the past. We can make choices about what we do with our time, our energy and our emotional stance.

Knowledge@Wharton: Going back to the friends component in the workplace, does it matter where those friends come from within the structure of the company? A lot of people say you have to be careful if you want to try to be friends with the boss.

McKee: It doesn’t matter where your friends are, but it does matter whether or not you have your eyes open and recognize what people are thinking about how you are behaving and who you are friends with. You’ve got to be aware of your organization’s culture and the rules of the road.
If you’re violating some of those rules — for example, going up the hierarchy and building friendships with people who are a couple levels above you or maybe in another division — you need to understand what the implications of that are. And you need to be maybe a little bit careful.

Knowledge@Wharton: How does the middle manager deal with this?

McKee: Middle managers get it from all sides. They are pulled in every direction, and it is probably the hardest job in any organization. They, more than anybody, need to hear this message. Life is too short to be unhappy at work. Middle managers have a tremendous impact on the people who work for them, and recognizing that you more than anybody are the creator and the curator of the culture in the organization is an important place to start.

Knowledge@Wharton: Sometimes managers forget about the life people have outside of work.
McKee: We’re here at the Wharton School, and we’ve been studying management now for over 100 years. Some of the early approaches to managing organizations are really destructive, and one of the aspects of that early research has been the attitude that people don’t matter and that private lives ought to be left at the door of the office. It’s impossible to leave our private lives at the door of the office. It doesn’t mean that we talk about it all of the time, but we bring our experiences with us and we bring our feelings with us. Managers need to recognize that.

It’s also hard to find what is commonly called work-life balance. By the way, I don’t like that phrase. I think it’s a myth. I don’t think there is any magic formula that says if we get it just right we’re going to be happy at work and happy at home. It’s more about understanding that the lines are blurred between work and home now, and we need to learn how to manage our choices and our attention.

Knowledge@Wharton: What about those who work remotely and can feel very isolated and disconnected?

McKee: I understand the isolation and feeling kind of left out. The reality is that it takes a lot more effort to build relationships when we work remotely. We need to take time. When we’re working remotely, we get on the phone, we do the work that needs to be done, we talk about the project, and we get off the phone. That leaves us feeling kind of empty. We need to take that extra five minutes to have a chat, have a laugh, feel like we are in a relationship with somebody. It takes effort and self-management because the temptation is to just do the work. You talk about the gig economy, right? We’re all sort of working in a portfolio manner these days. We take on this bit of work and that bit of work, and much of it is virtual.
“Life is too short to be unhappy at work.”
I think we need to figure this out because the bottom line is that we have not changed as human beings. We still need to feel like we belong, we need to feel that we’re cared for, and we need to be able to care for others in return. If we’re working far away, we’ve got to take extra time and make a concerted effort to build those relationships in a different kind of way than if we’re in person.
I’m a big proponent of working from home or working remotely. I think it’s really helpful to individuals and companies. People who are able to work at home feel trusted, and when you feel trusted you are more committed to your organization. A lot of people report being able to get more done away from the office because you don’t have the interruptions. The downside is that you have to find a way to keep the relationships fresh and alive because that’s as important as getting that project done.

Knowledge@Wharton: Companies seem to be more aware of employee happiness than they used to be, which is a good thing. Do you think we’re going to continue down that path?

McKee: Companies are more aware, so are enlightened CEOs and enlightened leaders. I think we will continue down the path for the following reasons. It’s not just nice-to-have, and it’s not just about feeling good. We’ve got solid research coming out of positive psychology, neuroscience and management that tells us that feelings matter. When we feel good, we’re smarter. And we need smart employees now. We need people who are committed, who are engaged. The research is pretty clear. Happiness before success. If we want our employees to be at their best, we need to care about their emotional well-being as well as their physical well-being.

View it at the original source